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It is proved that the ordinary dichotomy is preserved under perturbations of the 
impulse matrices of linear impulsive differential equations. 

1. INTRODUCTION 

Recently the dichotomies for ordinary differential equations have been 
investigated by many authors (Coppel, 1978; Elaydi and Hfijek, 1985, 1987, 
1988, and to appear; Palmer, 1977, 1979a, b, 1982a, b, 1984a, b, 1987a, b, 1988; 
Sacker and Sell, 1974, 1976a, b, 1978). In Milev and Bainov (to appear) we 
first studied the dichotomies for linear impulsive differential equations. In 
the present paper we consider one of the important properties of the ordinary 
dichotomy for impulsive differential equations, namely that it is preserved 
under perturbations of the impulse matrices. 

2. PRELIMINARY NOTES 

Let t o < t l < ' ' ' < t i < ' ' ' , l i m t i = ~ a s  i-->~,be a given sequence of 
real numbers. Consider the linear differential equation with impulses at 
fixed times 

dx 
-~=A( t )x ,  t #  t i 

(1) 

x(ti +0) = B,x(t,), i=  1, 2 . . . .  

where the (n x n) coefficient matrix A(t) is piecewise continuous in the 
interval [ to, +0o) with points of discontinuity of the first kind at t = t~ and 
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the impulse matrices Bi, i = 1, 2 , . . . ,  are constant. The underlying vector 
s p a c e E i s R  n o r C  ~. 

Remark 1. For t ~ [ ti + 0, ti+l] the fundamental  matrix X (t) of  equation 
(1) admits the representation 

X ( t) = U( t) U- l (  ti + O)BiU( ti) U- ' (  ti_, +0)Bi_I �9 �9 �9 B, U(tl)  U-l(  to) 

where U(t)  is the fundamental  matrix of  the equation dx /d t  = A(t )x .  The 
matrix X ( t )  is continuously differentiable for t # t~ with points of  discon- 
tinuity of  the first kind at t =  t~, i.e., X(t~+O)= BiX(t~). The fundamental  
matrix X ( t )  is invertible if and only if the impulse matrices B~, i = 1, 2 , . .  , ,  
are nonsingular. 

Together with equation (1), consider its perturbed equation obtained 
by a perturbation of the impulse matrices 

dx 
- A( t )x ,  t # ti 

dt (2) 

x( t i+O)=(B,+B~)x( t i ) ,  i = 1 , 2 , . . .  

where the matrices /~i, i = 1, 2 , . . . ,  are constant. 
Let ~o be a fixed real number,  7o-- to. 

Definition 1 (Milev and Bainov, to appear) .  The subspace Y of  the 
underlying vector space E induces an ordinary dichotomy of the solutions 
of  equation (1) on the interval [~o, + ~ )  if  for some subspace Z supplemen- 
tary to Y there exists a constant N such that all solutions x, y, z of  equation 
(1) with x = y +  z, y ( ro)~  Y, and Z(ro)~ Z satisfy the conditions 

ly(t)[<-Nlx(s)[ for t>-s>-ro 
(3) 

[z(t)l<- Nlx(s)[ for s>--t>-'ro 

When the fundamental  matrix X ( t )  is invertible, Definition 1 can be 
written as follows: 

The subspace Y of  the underlying vector space E induces an ordinary 
dichotomy of  the solutions of  equation (1) on the interval [z0, +oo) if  for 
some projector P (p2 = p )  with range R ( P )  = Y (the kernel of  P coincides 
with Z )  there exists a constant N such that 

[X ( t )X - l ( ro )PX( zo )X- l ( s ) [  <- N for t-> s >- ro 
(4) 

IX( t )X- l (~ 'o) ( I  - P)X( .ro)X-I(s)[  <- N for s -> t - ~'o 

where I stands for the unit matrix. 
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Definition 2. Let P (p2 = p)  be a projector. The function 

fX ( t )PX-1(s )  for t > - s >- to 
G(t,s) = [ X ( t ) ( P _ I ) X _ l ( s )  for s> t>_to 

will be called the Green's function for equation (1). 
We shall use the following properties of  the Green's function, which 

can be verified immediately: 

OG(t,s) 
- - - A ( t ) G ( t , s ) ,  t # s  (5) 

Ot 

G(t~+O,t)=B,G(ti,t), t#t~, i = 1 , 2 , . . .  (6) 

G(ti+O, t,+O) = B,G(ti, t,+O)+I, i =  1 , 2 , . . .  (7) 

3. M A I N  R E S U L T S  

Theorem 1. Let the impulse matrices Bi, i = 1, 2 , . . . ,  of  equation (1) 
be nonsingular and let the subspace Y induce an ordinary dichotomy of 
the solutions of equation (1) on the interval [to, + ~ )  with a projector P 
and constant N. If 

[Bi] = K < 1 (8) 
i=l N ( 2 N +  1) 

then the perturbed equation (2) also has an ordinary dichotomy on the 
interval [ to, + ~ ) .  

Proof Let X(t )  be the fundamental matrix of equation (1) for which 
X(to) = I. The bounded solutions y(t) of equation (2) are just the bounded 
solutions of the equation 

0 3  

y(t)=X(t)~7+ ~ G(t, tj+O)By(t:), ~I~ Y (9) 
j=l 

since for t # ti, dy(t)/dt = A(t)y(t)  and for t = ti, 

y( t ,+O)=X(t i+O)'q+ ~ G(ti+O, tj+O)By(t;) 
j=l 

= B,X(ti)rl + ~ BiG(t,, tj +O)/~jy(tj)  + B,y(t,) 
j=l 

= ( Bi + Bi)y( ti) 
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Denote by H the Banach space of all bounded, piecewise-continuous, 
vector-valued functions y(t)  in the interval [to, + ~ )  with points of discon- 
tinuity of  the first kind at t = ti, y(ti) = y(ti - 0), i = 1, 2 , . . . ,  and with a norm 

IIyH = sup,~,o [Y(t)l. 
The linear operator 

oo 

Ly(t)  = • G(t, tj+O)Bjy(tj) 
j = l  

maps H into itself since 

[Ly(t)[<_ ~ [G(t, tj+O)[[Bj[]y(tj)[<- NK[]y[[ 
j = l  

This implies that ILl-< N K  < 1 and by the contraction principle, equation 
(9) for any ~/~ Y has exactly one solution y ~ H which depends linearly 
on 7/, i.e., y(t)  = F(t)~7, where F(t)  is a bounded matrix. By (9) 

y = X(t) 'q + Ly(t)  = X(t)PX-~(to)'q + Ly(t)  

since X(to) = I and P r /=  7/. Hence 

i.e., 

Ilyll ~ Nlnl + ILl IlYll ~ Nlnl + NK [[Yll 

N N 
[[yll~l_Ngln I and IF(t)I<--I_NK 

Let 17" be a subspace of  E consisting of the initial values y(to) of  the 
bounded solutions of equation (2), 

where 

y(to) = "q+ Z G(to, t j+O)~( t j )  
j = l  

oo 

= n - ( I - P )  ~, X-'(tj+O)BjF(tj)T? 
j = l  

= ( I - ( I - p ) Q p ) T  1 

Q=(I-P) ~ X- ' ( t j+O)BjF(t j )P 
j = l  

N 
IQ[~N. g .  1---NK" [P] 
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Hence  the ope ra to r  I - ( I - P ) Q P  maps  the subspace  Y onto Y.. This 
opera to r  has  a b o u n d e d  inverse on I +  ( I - P ) Q P .  The opera to r  

/5 = ( I  - ( I  - P ) Q P ) P ( I  - ( I  - P ) Q P ) - '  = P - ( I  - P ) Q P  

is a p ro jec tor  with range  R(/5)  = Y. The supp lemen ta ry  pro jec tor  I - / 5  = 
(I - P ) ( I  + QP) has a range  R ( I  - / 5 )  = Z. 

First we shall es t imate the solutions start ing f rom Y. Let s ~ [ tk + O, tk+l]. 
By (9) 

oo 

71 = X - ' ( s ) y ( s ) - X - ' ( s )  Y~ G(s,  t j+O)By( t j )  
j = l  

k 

= X - l ( s ) y ( s )  - E P X - ' (  t/ +O)Bjy( tj) 
j = l  

-- ~ (P-I)x- l ( t j+O)Bjy( t  ) 
j = k + l  

k 

= p X - I ( s ) Y (  s ) -  E PX- ' ( t j+O)Bjy ( t j )  
j = l  

i.e., 

oo 

y ( t ) = X ( t ) ~ +  E G(t,  t j+O)By( t j )  
j = l  

=X(t)PX-l(s)y(s)+ ~ O(t, t j+O)By( t j )  
j ~ k + l  

Hence  for  t ~ s, 

l y ( t ) l ~ N l y ( s ) l + N  ~ IBjl[y(tj)[ 
j = k + l  

Let us fix s and  set N l y ( s )  ] = a. The cone o f  the nonnegat ive  piecewise 
cont inuous  funct ions  ~o(t)= lY(t)] is invar iant  with respect  to the l inear 
ope ra to r  

o~ 

T~o( t )=N  E IBjl~~ 
j = k + l  

i.e., if  ~ ( t )  --< ~b(t), then  Tq~(t) <_ TO(t ). Hence  f rom ly(t)] <- a + Tly(t) l ,  we 
obta in  that  

Tly( t)] <- Ta + T2ly( t)l = N K a  + N K T l y (  t)I 
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i.e. 

N K c~ ct 
l y ( t ) ] -<  ~ + Tly(t)[ <- ~ ~ 1 - N K  - 1 - N K  

Hence  for  t -> s, 

N 
lY(t)]-< 1 - N K  ly(s)[ (10) 

Let z( t )  be a solution with initial condi t ion z ( t o ) e Z  and let t~  
[tin +0 ,  tin+l]. Then z( t )  is a solution o f  the equat ion 

z ( l ) = X ( t ) z ( t o ) +  ~ X ( l ) X - l ( t j + O ) O j z ( t j )  
j ~ l  

since d z ( t ) / d t  = A ( t ) z ( t )  and 

i 

z(ti + O) = X( t i  + O)z(to) + ~, X ( t i  + O)X-l ( t j  + O)JBjz(tj) 
j = l  

i--I 

: B iX( t i l z ( t o )+  Y, B i X ( t i ) x - l ( t j  +O)Bjz(tj) +/~z( t , )  
j = l  

= Biz(ti) + Biz(ti) = (Bi + Bi)z(t i)  

Let s e  [tk+O, tk+~]. From the formula  

k 

z(s)  = X( s ) z ( to )  + E X ( s ) X - l ( b  + O)lBjz(tj) 
j = l  

we express Z(to) and in view of  ( I - P ) z ( t o ) =  Z(to) for t <  s we obtain 

k 

z(t) = x ( t ) ( I  - e )x -~(s )z ( s )  - 2 x ( t ) ( I  - P)X-l( t j  +o)~jz(tj) 
j = l  

+ ~ x( t )x- l ( t j+o)~j~( t j )  
j = l  

= x ( t ) ( i - P ) X - l ( s ) z ( s ) +  ~ x ( t )PX- ' ( t j+o)~z ( t j )  
j = l  

+ y. x ( t ) ( I -P )X-~ ( t j+o)~ j z (b )  
m < j ~ k  

and deduce  the inequali ty 

k 

Iz(t)l<- Nlz(s)]+ g 2 ]Bj l lz ( t j ) l  
j = l  
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The linear operator 

k 

T,~(t) = N E [B)i~(t)) 
j = l  

is monotone and, as for (10), we obtain that 

N 
Iz(t)l<-1_NKlZ(s)[ for t<-s (11) 

Let x(t)=y(t)+ z(t) be an arbitrary solution of equation (2) and let 
s s [tk +0,  tk+l]- From the formula 

k 

x(s)=X(s)x(to)+ E X(s)x-l(tj+O)Bjx(tj) 
j = l  

we express x(to) and in view of (9) we obtain 

y(s)= X(s)Px(to)+ ~ G(s, tj+O)Bjy(tj) 
j = l  

k 

= X(s )PX- ' ( s )x ( s ) -  E X(s)px-I(tj +O)Bjx(lj) 
j=l 

k 

+ E X(s)PX-I(t)+O)B#(tj) 
j = l  

o0 
+ E X(s)(I-P)X-I( t j+O)By(t j )  

j = k + l  

k 

= X(s)PX-I(s )x(s ) -  y~ X(s)PX-I(tj+O)Baz(tj) 
j--1 

+ ~ X ( s ) ( I - P ) X - I ( I j + O ) B j y ( t j )  
j = k + l  

In view of  (10) and (11) we deduce the inequality 

k 

[y(s)[ ~ NIx(s)l + N E IBjllz(tj)l + N ~ IBjlly(tj)[ 
j = l  j = k + l  

N2K N2K 
<- NIx(~)l + 1 _ -S-~ l~(~) l  + i -  N K  hy(~)l 

N 2N2K 
-< [x(~)l+ ly(~)l 

1 -  N K  1 -  N K  
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Hence 

N 
ly(s)l  ~ 1 - N K  - 2 N 2 K  Ix(s)] 

By (10)-(12) for t_> s 

l y ( t ) l -  < 

and for t ~ s 

i.e., 

where 

N 2 

(1 - NK)(1  - N K  - 2 N 2 K ) I x ( s ) l  

N N 
Iz(t)l <- 1 - N K  ]z(s)l--- 1 - N K  ([x(s)l + JY(S)l) 

N ( I  + N -  N K - 2 N 2 K )  . . . .  
-< (1 - NK)(1  - N K  -2N2K)Ix~s ) l  

ly(t)[<-Nl[x(s)[ for t>-s>-to 

]z ( t ) l~Nl lx (s ) l  for S>-t>--to 

N ( I + N - N K - 2 N  2K) >~ 
N1 . . . . . .  ~ o 

(1  - N K ) ( 1  - N K  - 2 N  K) 

Hence the perturbed equation (2) has an ordinary dichotomy on the 
interval [to, +co). �9 

Corollary 1. If  the conditions of Theorem 1 hold, then the perturbed 
equation (2) has an ordinary dichotomy on each subinterval [To, +c~), ~-o_> 
to, as well. 

Proof  Since conditions (4) are valid in the interval [~'o, +co) as well, 
then equation (1) has an ordinary dichotomy on the interval [To, +oo), 
moreover, condition (8) holds. Then, by Theorem 1, the perturbed equation 
(2) also has an ordinary dichotomy on the interval [~'o, +oo). �9 

Remark 2 (Miler and Bainov, to appear). In the classical case, if the 
linear differential equation (without impulse effect) has an ordinary 
dichotomy on the interval [ to, +00), then it has an ordinary dichotomy on 
each subinterval [7o, +oo), ~'o m to, as well. For the linear impulsive differen- 
tial equations the following phenomenon is observed. The equation may 
have an ordinary dichotomy on the irlterval [ tk+0,+oo ) and have no 
dichotomy on the subinterval [ tk+~, +oo). We illustrate this by the following 
example. 
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Example 1. Let t~ = i, i = 0, 1, 2 , . . . ,  and consider the linear impulsive 
differential equation 

dx 
dt Ax, 

where 

x( ti + O) = Bix(ti), 

t ~  t~ 

i = 1 , 2 , . . .  

~ 1 , Bi = I 

0 

A =  0 , x =  x2 , B1 = for i - 2  

0 \x3/  

It  is verified directly that the equation has an ordinary dichotomy on the 
interval [0, +co) since the impulse at the moment  tl crumples the " in-  
appropr ia te"  solutions. The equation has no dichotomy on any of  the 
subintervals [% +co), r >  1, because there the problem coincides with the 
classical one and the eigenvalues of  the matrix A with a zero real part  are 
not semisimple. 

Lemma 1 (Milev and Bainov, to appear).  Let Zo and ~" be fixed real 
numbers in the interval [ to, +co) and let the impulse matrices Bi, i = 1, 2 , . . . ,  
of  equation (1) be nonsingular. I f  equation (1) has an ordinary dichotomy 
on the interval [~'o, +co) with a projector P(z0), then it has an ordinary 
dichotomy on the interval [r ,+oo) as well with a projector P ( z ) =  
X (,r)X-l(,ro) P(,ro)X ( ~-o)X-l(,r). 

Proof. For z--- Zo the assertion is obvious, since for t -> s ~ ~- 

X(  t)x-l(~-)p(,c)X(,r)x-l(s)  = X ( t)x-l(~-o)p(,ro)X(,co)X-'(s) 

and conditions (4) are fulfilled. 
Let r < Zo. By the Gronwal l -Bel lman inequality for r~, re ~ [ tm+ 0, tm+l] 

]U(~'I)U-I(z2)I<-explf~I2IA(O)] dO I 

Let t > s  and tc[ti+O,t~+~] and s~[tj+O, tj+l]. Then the fundamental  
matrix X(t )  has the form 

X ( t) = U( t) u - i (  ti +O)B,U( t,) U-'(  t~_l +O) 

X Bi - , . . .  Bj+I U(tj +O) u-l(s)X(s) 
Hence 

Ix' Kj+, exp IA(O)l dO 

I ' ~  I <- KiK~_I... Kj+~ exp A(O)] dO = K, t, s e [~-, to] 
. r  
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where K ~ = m a x ( l B ,  l, lB~,~[)>-l. In the same way we prove that 
]X(s)x-X(t)[  <~ K. Hence for any t, s e [% Zo] the inequality ] X ( t ) X - l ( s ) l  <- 
K holds. Without loss of  generality, let K -> 1. 

I f  ~- -< s < Zo-< t, then 

IX ( t )x- ' (  z) P( ~-)x ( ~-)x-~( s)l 
= [X( t )x - l ( ' ro)P(7"o)X( ' ro)X- l (~ 'o)X( ' ro)X- ' ( s ) l  <~ N K  

I f  r-< s -< t < Zo, then 

[X ( t)x-l(  ~.)P( ~.)X (~-)X-'(s)] 

<_ [ X ( t ) X - ' ( Z o ) I N I X ( T o ) X - I ( s ) ]  <_ N K  = 

Hence for t -> s -> z, 

[ X ( t ) X - l ( . r ) p ( ~ . ) X ( z ) x - a ( s ) l  <_ N K  2 

In the same way it is verified that for s >- t -> z, 

I X ( t ) x - l ( z ) ( I -  p ( z ) ) X ( 7 . ) X - ~ ( s ) ]  <_ N K  2 �9 

As a consequence of Theorem 1 and Lemma 1, we obtain the following 
assertion. 

Corollary 2. Let the impulse matrices B~ and B i+ /~ ,  i = 1, 2 , . . . ,  be 
nonsingular and let equation (1) have an ordinary dichotomy on the interval 
[to, +oo). I f  

i = l  

then the perturbed equation (2) also has an ordinary dichotomy on the 
interval [to, +oo). 

Proof. There exists a number  k so large that 
co 

E IB, I < 1 
i = k + l  N ( 2 N +  1) 

Since the impulse matrices B~, i -- 1, 2 , . . . ,  are nonsingular, then equation 
(1) has an ordinary dichotomy with the same constant N on the interval 
[ tk+0 ,+oo)  as well. Then by Theorem 1 the perturbed equation (2) also 
has an ordinary dichotomy on the interval [tk+0,+O0) and by Lemma 
1, equation (2) has an ordinary dichotomy on the interval [to, +oo) as 
well. �9 
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